

HARD PROBE RESULTS FROM PHENIX

Hubert van Hecke LANL

Overview

- Thermal Photons
- Flow in Small systems
- Open heavy flavor and J/Ψ

The PHENIX Detector

Central Electrons

- $|\eta| < 0.35$
- $\Delta \phi = \pi$
- Tracking: DC, PC
- eID: RICH, EMcal

Forward Muons

- $1.2 < |\eta| < 2.2$
- $\Delta \Phi = 2\pi$
- ~10\(\lambda\) absorber
- Tracking: wire chamber
- MuID: 5 layers of steel and larocci tube planes

Photons

Photons don't interact

Thermal photon spectra

- Thermal photon spectra are obtained by subtracting hard photons from all direct photon spectra
 - Hard photon contribution is estimated from p+p times Ncoll
- Fitting to low p_T region gives $T\sim240 MeV/c$, almost independent of centrality
- The Slope parameter reflects the convolution of the instantaneous rates with the time-dependent temperature.
 - One has to assume time profile to obtain the temperature at given time.

Recent results on photon v₂ and v₃

- Some centrality dependence in v₂, weak dependence in v₃
 - Similar trend as for charged hadrons (PRL 107, 252301 (2011)) and π^0 .

Models have a hard time, so far...

- C. Shen et al.,
- PRC 91, 024908 (2015)
- Thermal photon contribution calculated by 3+1D Hydro including viscous correction
- Two Initial conditions are considered
- v₂ and v₃ are for thermal + pQCD photons
- Blue shift effect is naturally included in the hydroevolution

See talk by Stefan Bathe

Flow in Small Systems

We have seen v_2 of π and p in d+Au

NATIONAL LABORATORY

Flow in small systems

But c3 in d+Au is small...

Small system flow - ³He+Au

Make a high-multiplicity trigger:

Flow in ³He+Au

Flow-like patterns in p(d)+A are surprising

Significant v_2 to high p_T is also surprising

ATLAS sees 5% v_2 at $p_T \sim 10$ What can we see at RHIC in d+Au collisions?

Near-side ridge in d+Au

How high in pT is there a peak contribution at $\Delta \phi = 0...$

Correlations between neutral pions and particles 3 units in rapidity away.

In d+Au, ridge persists to pT~6GeV

For correlation function described by *only* c1 and c2, there is a local maximum at $\Delta \phi = 0$ when -c2/c1 > 0.25

No near-side ridge in p+p MB.

Jet quenching in A+A

Fractional momentum loss vs. dN_{ch}/dη

Do hard probes suffer Floss in small systems? Likely not

So where does the 'flow' come from?

See talk by Klaus Dehmelt

Open Heavy Flavor

Muons at Forward/Backward Rapidity

Some calculations

Radial flow also qualitatively reproduce the enhancement

pQCD calculation considering / incoherent scattering reproduces the enhancement at backward rapidity

As well as forward, with shadowing, <a>CNM, pT broadening

Heavy Flavor Comparison with J/ψ

Similar suppression at forward rapidity

- Low co-mover density
- Same suppression mechanism

Different behavior at mid and backward rapidity
Different suppression mechanism
Larger nuclear break-up effects at higher-density
region

co-movers

Phi follows heavy flavor

Different processes act on open HF and phi. The match May be a coincidence.

Cold Nuclear Matter Effects

Calculation: PRC 84 044911 (2011) Nagle, Frawley, Levy, Wysocki Only shadowing, EPS09

Hot NM effects ~same in Cu, Au Cold nuclear matter effect?

Other effects

Wealth of data, many effects at work

- Many different systems: p+p ... U+U
- Energies 17GeV 2.7 TeV
- All of them are needed to disentangle the many different effects of hot and cold nuclear matter

Thank you

Parallel talks

- 'Hadron Correlations in ³He+Au and d+Au Collisions at PHFNIX' Anne Sickles, Leacock 232: Monday 15:50
- 'Cold nuclear matter effects on low mass vector mesons and heavy flavor production in d+Au collisions at √sNN = 200 GeV' Murad Sarsour, Leacock 232: Monday 16:30
- 'Measurement of single leptons from heavy flavor decays in the PHENIX experiment'

Matt Snowball, Leacock 219: 10:50

- 'System size dependence of J/ψ production at RHIC' Aneta Iordanova, Leacock 219: Tuesday 11:30
- 'High p_⊤ single identified particles in various systems, various collision energies, and several scaling variables'
 - Klaus Dehmelt, Leacock 26: Wednesday 09:00
- 'Direct photon production and azimuthal anisotropy measured in PHENIX' Stefan Bathe, Leacock 232: Wednesday 10:50

Back up

Evolution of HF e production

- The nuclear modification factors for HF electrons at mid-rapidity in d+Au, Cu+Cu, and Au+Au
- Nice trend from smaller systems, d+Au and peripheral Cu+Cu, where enhancement effects are dominating to central Cu+Cu and Au+Au collisions, where suppression effects take over

NATIONAL LABORATORY

